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Abstract 

That the equations describing physical phenomena shoull be independent of the 

system of coordinates employed is a universally accepted principle, That the same 

equations should also be independent of the system of units employed (gauge invariance 

in Weyl terminology) has also been discussed but to a lesser extent due to the lack of 

experimental evidence. The situation has changed recently with the discovery that 

high energy phenomena exhibit scale invariance, i. e. invariance with respect to the 

chosen unit of length. Since the behavior of matter at high energy is relevant to our 

understanding of the early phases of cosmological evolution, we have studied the ex- 

tension of scale invariance to gravitational phenomena. Gravitational equations will 

be derived that are valid in any system of units. The freedom of choosing an arbitrary 

system of measuring units is represented by the presence of an arbitrary gauge func- 

tion B(t). Standard Einstein equations are recovered if a particular gauge is imposed, 

&t) = const. Following Diraqthe corresponding units will be called Einstein or 

mechanical units. 

Atomic units, derivable from atomic constants, are assumed to be distinct 

from Einstein units and consequently a different gauge condition must be imposed. 

It is suggested that Dirac's large number hypothesis be used for the determination of 

this condition so that gravitational phenomena can be described in atomic units, The 

result allows a natural interpretation of the possible variation of the gravitational con- 

stant without compromising the validity of general relativity. 

A geometrical interpretation of the gauge covariant theory is possible i f  the 

covariant tensors in Riemannian space are replaced by covariant co-tensors in a 

1 



Integrable Weyl space. A gauge invariant action principle is constructed from the 

metrical potentials of the integrable Weyl space. 

Application of the dynamical equations in atomic units to cosmology yields a 

family of homogeneous solutions characterized by R - t for large cosmological 

times. This in turn implies qo 

tion of the deceleratioo parameter. 

0 ,  in agreement with the most recent determina- 

Equations of motion in atomic units are solved for spherically symmetric 

gravitational fields. Expressions for perihelion shift and light deflection are de- 

rived. They do not differ from the predictions of general relativity except for secular 

variations, having the age of the Universe as a time scale. Similar variations of 

periods and radii for planetary orbits are also derived. 

The generalized hydrodynamic equations derived for atomic units are 

studied. It is faund that the stellar structure equations are formally unchanged, 

except that G and M can now be functions of the cosmological time. This in turn 

would imply secular variations of the stellar luminosities. 

The effects of these results on the past climatology of the earth and other 

geological effects are discussed. 

None of the consequences of the theory investigated so far is found to be in 

disagreement with observations. 

2 
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I. Introduction 

In his theories of relativity, Einstein recognized the equivalence of different 

states of motion and proceeded to build up physical theories which incorporated such 

equivalence by postulating a priori symmetry principles. The result is a beautiful, far 

reaching new structure for classical physics. Various predictions of the theories, 

seemingly parodixical at the timg have been successfully verified and coosequently man's 

conception of space-time has been radically altered. Since the dawn of relativity, sym- 

metry principles have played a dominant role in theoretical physics, most prominently 

in the field of elementary particles where space-time and internal symmetries are  

postulated a priori. In classical physics however, the space-time symmetries con- 

sidered by Einstein seemed exhaustive and there had been few attempts to impose fur- 

ther invariance conditions. 

In an attempt to unify electromagnetism with gravitation, Weyl(') generalized 

Riem.umian geometry by allowing lengths to change under parallel displacement. Al- 

though the theory was soon rejected as  unphysical(2) a mathematical operation 

known as gauge transformation was introduced, which with some modification has been 

widely used in physics. As was pointed out by Eddingt~n'~), a gauge transformation 

represents a change of units of measurement and hence gives a general scaling of the 

physical system being investigated, In recent years, due to the scaling behavior ex- 

hibited in high energy particle scattering experiments, there has been considerable 

interests in manifestly gauge invariant theories(*). However, such invariance is 

considered valid only in the limit of high energies or vanishing rest mass. This is 

due to the fact that in elementary particle theories rest masses must be considered 

constants, and it is well that gauge covariance is generally valid only when 
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the constant rest  mass requirement is relaxed. It is of course sensible to assume that 

particle rest masses are constants provided the units of measure are the elementary 

particles themselves. Under a general gauge transformation, the units of measure are  

altered and the constant rest mass condition no longer seems physically necessary. . In 

this connection we point out that it may be felt that atomic physics has provided us a 

unique system of units whereby a l l  physical quantities a re  measured,and it is therefore 

unphysical to consider general transformations away from the atomic units. We do not 

agree with this point of view. In classical experiments concerning gravitational inter- 

action, masses and lengths of arbitrary macroscopic objects have been used as units of 

measure. Whether such units are  in fact constant multiples of atomic units, as con- 

ventionally assume4 has not been established. Indeed it was the recognition of the 

possibility of a temporal dependence of the proportionality factors between atomic 

units and gravitational units of bulk matter that led D i r a ~ ( ~ )  to formulate his large 

mmber hypothesis (L"), to which we shall address ourselves presently. In this 

paper we consider the behavior of Einstein's theory of gravitation under an arbitrary 

transformation of units. It will be seen that this leads naturally to a gauge covariant 

theory of gravitation originally proposed by Dirac('). We shall present and develop 

the theory and show how naturally Dirac's LNH can be fitted into the structure of this 

theory. 

The recent revival of interest in Dirac's large number hypothesis and the 

ensuing cosmological models has been due to the re-introduction by Dirac (8)  

of the concept of two metrics and of the possibility of continuous matter creation as a 

modification of the earlier version of LNH('). 

interpretation of observational data in terms of LNH while at the same time preserving 

the validity of Einstein's theory of gravitation which has survived improved experimental 

These modifications allow plausible 
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tests in the past few years. The present version of LNH and some of its consequences 

have been discussed and amplified in many of Dirac's recent publications (lo) (11), the 

essence of which was summarized by Canuto and Lodenquai("). We have gathered the 

salient features of Dirac's LNH in Appendix II. Here we point out that the LNH yields 

an asymptotic theory, valid for large cosmological times. For example, in cosmology 

it predicts that the scale factor R(t) in a spatially homogeneous universe should be pro- 

portional to t, to within a slowly varying function of t ,  such as & t("), where t is the 

cosmic time in atomic units. This specifies the kinematics of the present universe 

upon which cosmological tests of the recent past can be made (12) (13). However, i t  is 

incorrect to extend the present kinematics R(t) 

when this is done, it is(14) found that the strong interaction rate was so slow that nucleo- 

synthesis could not have taken place. Nor could the background radiation at any time be 

t back to the early phase. Indeed, 

in equilibrium with matter because the photon mean free time for compton scattering is 

always longer than the evolution time scale of the universe. We emphasize that this in 

no way implies a contradiction between the LNH and observation. As  mentioned above, 

~teigman' s(14) result is not a necessary consequence of LNH. 

On the other hand, in problems concerning local gravitational phenomena such 

as planetary orbits, Dirac(") used various intuitive arguments to derive consequences 

of his LNH to contrast with those of the standard gravitational theory. 

Others have improvised such methods(15) and in the process dynamical equations have 

been posited ad hoc. The results so derived again cannot be taken as  consequences of 

the LNH. 
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WXle it is true that the LNH does not represent a complete physical theory and 

that alternative interpretations of the large numbers exist which seem to render the 

LNH unnecessary, we feel that no argument showing the LNH to be either contradictory 

to observational data or  logically inconsistent has yet been put forward. To finally re- 

ject or embrace the LNH, a dynamic theory which incorporates the LNH should be de- 

veloped and the conseqtuences systematically investigated. This is the purpose of the 

present paper. 

In 11, we shall develop a gauge covariant theory of gravitation which, in addition 

to the general coordinate invariance imposed by Einstein, contains invariance under 

scale transformation. Thus, not only are physical laws invariant for observers with 

different states of motion, they are  also invariant for observers witli different measur- 

ing instruments. In practice two kinds of units have been used, the gravitational units 

we mentioned above, which in the sequel we call "Einstein Units" in conformity with 

Dirac's nomenclature, and atomic units. -We shall see that withhi the gauge covariant 

theory of gravitation the LNH finds a natural role: it  gives the relation between atomic 

and Einstein units. In our opinion this was precisely the intent of Dirac's LNH for the 

past 40 years. 

A gauge invariant variational principle will be given from which field equations 

will be derived. However, to facilitate the derivation of conservation equations we find 

it convenient to borrow the mathematics developed for Weyl(l) space and to use the 

notion of co-covariant equations in Weyl space as introduced by Dirac. (7) The elemen- 

tary features of Weyl space and some relevent mathematical formulae are  collected in 

Appendix I. It should be noted that we do not use the geometry of Weyl space for the 

purpose of unifying the electro-magnetic and gravitational fields as Dirac(') intended. 
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In fact, in the present paper, we shall not consider the existence of a coherent electro- 

magnetic field at all. Incoherent fields can be considered a photon gas and can be in- 

cluded in the matter part of the energy momentum tensor. While our variational prin- 

ciple is identical to the gravitational part of Diracls(') action, our treatment allows us 

to be more specific about the gauge function and its connection with LNH. Further- 

more, we can also include matter creation which is absent in Dirac's formulation of the 

action principle. 

Due to the apparent similarity of Dirac's action integral with that of Brans and 

Dicke(") and its variants(23), it could be erroneously assumed that Dirac's theory is 

either contained in or  is another variant of the Brans-Dicke theory. We have thus de- 

voted one section to explain the difference in both spirit and content of the theories. 

Having obtained a set of dynamical equations we can derive astrophysical conse- 

quences in analogy with the stmdard themy, siz. @mmical equatims are  solved for 

specific problems at hand. In particular, we consider homogeneous cosmological solu- 

tions in 111. In IV, we study the geodesic equations and derive expressions for the 

perihelion shifts, light deflections and secular variations of planetary orbital elements. 

We also derive the stellar structure equation for a star in quasi-static equilibrium. A 

short discussion of the effects of the above results on the past thermal history of the 

earth as  well as of other geophysical effects is given at the end. 
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II. Gauge Covariant Theory of Gravitation 

Einstein's general theory of relativity assumes that the gravitational constant G 

is a true constant. The LNH states that G N  t-' , where t is the cosmological epoch. 

To reconcile these Dirac(') introduced the concept of two metrics as follows. The 

Einstein equations with constant G are assumed to be valid in "mechanicalT1, o r  

Einstein units. They are necessarily different from atomic units upon which the LNH 

was constructed. It is only in atomic units that G has an epochal dependence. Clearly, 

the scale factor which effects a transformation between Einstein and atomic units must 

be time dependent. To obtain relevant dymmical equations in atomic units, Dirac sug- 

gests a transformation of the line element, ds = p dsA, be made and the correspond- 

ing field equations derived as a result. However, the functional form of p is not speci- 

fied. We shall see below that it can be limited by the present prediction of LNH, 

E 
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When units transformations of the kind mentioned above are  considered, a 

natural generalization of Einstein's theory of gravitation is obtained by requiring that 

physical laws be invariant under general units transformation as well as coordinate 

transformation. An action principle satisfying these invariance requirements will be 

given. Gauge covariant field equations can then be derived. We shall motivate the con- 

struction of such a theory by the following analysis of Einstein equations under a general 

transformation of mi ts. 
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2.1 Transformation of Units - Einstein Field Equations 

We start with the Einstein equations in Einstein units 

is the Einstein tensor. The bars indicate that Einstein units are being used. The line 

element dz is given by 

- 
where the coordinate interval is dimensionless. is the matter energy-momentum 

tensor expressed in geometric units, i. e. (length) -2 , with lengths in Einstein 

units. Under a transformation 

i t  is easily seen that since 

(2.4) 
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Equation (2.6) represents a conformal transform geometry des- 

cribed by to one described by g . The corresponding transformation of the 

Ricci tensors and therefore of the Einstein tensors is well known(16). We have *) 
clv PV 

where on the RHS, covariant differentiation as well as index raising and lowering 

operations are  carried out with respect to g 
ClV 

with 

The cosmological term can be written as  

,tion from 

*)For any scalar a, a - = a;( 
P 



11 

This does not complete the transformation of units on the Einstein equations since the 

consideration of conformal transformation of geometries does not tell us how ?J 

transforms. To find out, we consider a further transformation of (2.7). Let 
PV 

(2. sa) 

Denoting covariant differentiation w. r. t. g1 

(2.7) can be written as 

by ":'l, the expression on the RHS of 
I-lV 

Noting that 
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we see that the above exercise demonstrates the form invariance of the RHS of 

(2.7). Similar invariance can be trivially ascertained for the cosmological term in 

the Einstein wation. We conclude therefore that the matter source term must also 

be form invariant and that the field equations in general units can be written as , 

E 
1 
a 
I 
u 
I 
I 
I 
I 
I 
I 
I 

are expressed in geometric units and the gravi- 

tational constant does not appear explicitly. I€ conventional units are used for the 
and 3, As noted above, 5 

PV 

stress-energy tensor, we can write 

(2. lla) 

(2. l lb )  

W l e  has been stipulated to be constant, G in general is not, unless the scale 

factor p is constant. In particular, if T is measured in atomic units, one gets 
PV 

from (2.10) a numerical value in atomic units for G which can be expected to vary. 

It should be remarked that in physical measurements involving the gravitational interaction 

alone, the gravitational constant and the source strength (mass) always appear as a 

product and cannot be measured separately. Conventionally, one defines a macroscopic 

unit mass. G can then be measured in terms of it. 



2.2 Co-Covariant Equations - Geodesic Equations 

Having arrived at the gravitational field equations (2.10) in general units we 

seek to characterize the nature of the spacetime manifold underlying such equations. 

In general relativity spacetime is taken to be Riemannian and any needed equation can 

be found by taking the pertinent equation from special relativity and writing it so that it 

is form invariant under arbitrary coordinate transformations. We wi l l  see 'chat the 

spacetime underlying eq. (2.10) is an integrable Weyl (IW) manifold, and that any 

needed equation can be found by taking the pertinent equation in special relativity and 

writing it so that it is form invariant under both arbitrary coordinate and arbitrary 

scale transformations. Whereas equations form invariant under arbitrary coordinate 

transformations are called covariant, equations form invariant under both arbitrary 

coordinate and arbitrary scale transformations will be called co-covariant after 

Dirac('). Use of the term covariant is reserved for properties related exclusively to 

the metric tensor g as in Riemannian theory. 
uv 

In Riemannian geometry, if a displacement vector 6xp is parallel transported, 

its length does not change along the path. Thus 

However, under a general scale transformation, 

ds 4 ds' = q ds 

(2.12) 

(2.13) 
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the metric tensor becomes 

(2.14) 

The length of the displacement vector in this new system of units will generally change 

under parallel transport. In fact, 

(2.15) 

Consequently, a generalization of Riemannian geometry is called for. Such a generali- 

zation was provided by Weyl") and we shall use the mathematics developed for this 

generalized geometry to describe our gauge covariant theory of gravitation. We have 

given a concise summary of the essential features of Weyl's geometry in  Appendix I. 

More details can be found in the books by Eddingt~n(~) or Weyl(l), himself. 

It should be pointed out that Einstein(17) had objected to the use of Weyl geometry 

to describe the physics of electro-magnetic as well as gravitational phenomena. The 

essence of the objection(18) rests on the fact that sharp spectral lines are observed 

even in the presence of electro-magnetic field, whereas in Weyl's theory, the electro- 

magnetic field would imply a non-integrable length which in turn implies that different 

atoms, having very different past world lines, should not be emitting radiation at  the 

same frequency. The same objection still applies even though a different system of 

units can be set up, since transformation of units such as given by (2.13) does not alter 

the gauge invariant integrability condition (see Appendix 11) 
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- k  = o  
V ; p  

k 
p;V 

(2.16) 

However, in order to include gauge covariance considerations of gravitational phenomena, 

we do not need the fully generalized Weyl space. Indeed, comparing (2.15) with (Al. 3), 

we need generalize the Riemannian geometry to the extent that Weyl's metric vector k 
I-I 

can be expressed as a gradient 

(2.17) 

in which case (2.16) is satisfied and Einstein's objection does not affect our use of such an 

Integrable WeYl geometry (IW geometry). In the literature, one often finds statements 

to the effect that whenever (2.16) is satisfied, the geometry is Riemannian. It is true 

that when (2.17) holds, the space is conformally equivalent to a Riemannian space. How- 

ever, to identify the two is to assert that k is unobservable and is completely irrele- 
P 

vant to the description of the physical world. We do believe that an 'fabsolutefl k has 

no physical significance and hence is unobservable. In fact, this is the reason for im- 

posing gauge invariance("). But the relative k which describes the difference between 

two systems of units, such as those provided by gravitational theory and atomic theory 

does have physical significance. The non-measurability of the ftabsolutefl metric vector 

allows one to stipulate that k 

choose to be Einstein units. 

I-I 

I-I 

is identically zero in one system of units which we 
I-I 

Using general units of measure, the natural description of gravitational phenom- 

ena is given by the IW space whose metrical properties are given by the metric tensor 
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and a scalar potential i p .  But to make use of the mathematics developed for gw 
Weyl geometry, i t  is convenient to retain the scale vector k 

that it is a gradient vector field. 

with the understanding 
I-1 

Having determined the mathematical space for our description of physical 

phenomena, we recall how symmetry principles have been powerful tools for arriving 

at general equations in the theory of relativity when equations in special cases a re  

known. Lorentz covariance requires that all physical equations are written as tensor 

equations in Minkowski space. General covariance then requires that the tensor equa- 

tions must involve tensors in Riemannian space. Thus, having postulated the symme- 

try properties, equations of motion written in a particular coordinate system can be 

generalized by putting the quantities involved in the appropriate tensor form so that the 

equations are  valid in arbitrary coordinates. In particular, we note that it has been a 

common practice to generalize special relativistic equations to be generally covariant 

by replacing partial derivatives by covariant derivatives. We shall apply the same 

technique to further generalize Einstein's theory of gravitation. From the preceding 

discussion, we expect that in a gauge covariant theory, the physical equations must in- 

volve tensors in Weyl space, called co-tensors. 

The notion of a co-tensor and its power, and the concept of co-covariant differ- 

entiation which brings a co-tensor into a co-tensor of the same power are  described in 

Appendix I. We observe here that p(x), defined in (2.4) as  the scale factor between 

Einstein units and any general units, is a co-scalar of power -1. That this is indeed 

the case can be seen trivially by considering transformation of the type (2.13) 

(2.18) 
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Hence 

(2.19) 

From considerations of the transformation properties of the Einstein equation 

in the preceding section, we expect that the field equation in a gauge covariant theory 

can be written as an in-tensor equation having the form 

(2.20) 

where *A 

them separately. Since (2.20) is the generalization of (2.1) the in-tensors must be the 

generalizations of the tensors in (2.1). Since the metric tensor is a co-tensor of power 

-1-2, we can write 

is the cosmological term and each term is an in-tensor. We consider 
WJ 

with 

2 -  A = $  A 

(2.21) 

(2.22) 

being a co-scalar of power -2. The Einstein tensor consists of two terms, each 

having i ts  in-invariant generalization. From (Al.  7) and (Al. 8) we can write 
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(2.23) 

- 2 k  k 
P V  

kx - 
v;p + 2gpv ;x = G  - k  - k  

I-IV ,; V 

where the term ( k  

energy-momentum tensor we consider for simplicity a pressureless fluid. In general 

- k 
p; W V;p 

) has been dropped because (2.17) is assumed. For the 

relativity we have 

The four-velocity can be easily shown to be a co-vector of power +l. The in-tensor 

generalization of the above can then be written as 

(2.24) 

where (Gp) is a co-scalar of power -2. The separation of G and p is artificial at this 

stage for we do not know a priori how G and p transforms under a scale transformation. 

For the present, we use (2.24) formally and (2.20) can be written as 
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- 2 k  k 
I J V  

k x  - 
+ 2gPv ;x GPV p; V V;p  

- k  - k  

(2.20a) 

= -  IT G p  Up pv + Ag 
IJV 

Equation (2.20a) is identical to (2.10) i f  

6 
(2.25) 

. This amounts to prescribing the gauge potential of IW space as follows: In 

Einstein units, the natural gauge 

k = 0 ;  g = constant 
I-I 

is used. For any other system of units, the gauge must be changed, and the gauge in- 

duced by such a change of units is precisely (2.25). Thus, in general the metric poten- 

tial g must be written as 

+ = -  & I D  (2.26) 

where B is the scale factor between the units being used and the Einstein units. 
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In addition to the field equation (2.20), one can easily generalize other equations 

in relativity for the gauge covariant theory. Thus, the conservation equation 

- 
p v ;  v = 0 

which follows from the Einstein equations, must now be written as 

*3”V = 0 
*V 

6 

where *fv is a co-tensor of power -4. 

(2.27) 

We shall now derive the geodesic equations for massive particles as well as  

for photons. 

We shall follow here the method of Papapetrou(20) . 
sion(Al.1) for the parallel transport defined by the connection yv 

tion can be easily derived 

Given the general expres- 

, the general equa- 
* 
a$ 

where h is a parameter characterizing the curve. The scalar f(1) can be easily deter- 

mined by multiplying the previous equation by 
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and calling 

The result is 

which allows us  to write geodetic equation in the general form 

For massive particles we can identify dA = ds 

andmoreover = 1. 

The final form of the geodetic equation is 



(2.28a) 

because of (2.25). 

For photons, since ds r) 0, 5' cannot be identified with a velocity and we shall 

only impose 

@ = o  

so that the final equation reads 

(2.28b) 

In the case of massive particles Eq. (2.28a) can also be derived by generalizing the 

ordinary geodesic equation 

to its co-covariant form 

Using the definition (Al. 16) and remembering that uv is a covector of power -1, it is 

easy to recover (2.28a). 

22 
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In summary, to obtain the generalized equations in the gauge covariant theory, 

we take the general relativistic equations, write the tensors in co-tensor form, and 

replace covariant differentiations by co-covariant differentiations. It should be noted 

that in addition to the variables that exist in the general relativistic equation, we now 

have also 8 ,  whose functional form is not specified. We shall return to this subject 

after a gauge invariant variational principle, from which (2.20) can be derived, has 

been introduced. The physical interpretation of equations (2.27) and (2.28) as well as  

a possible way to determine B for the above equations w i l l  be discussed after the formal 

development of the theory is completed. 
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2.3 Gauge Invarlaut Aotion Prindple 

By analom with the gemeral relativletio oaae, the aotion must be an in-invariant 

oosletrwted aut of the metrio tensor g 

impOaeathenaturalg$atee forEineteinunit8,thepotentialcanberqlacedby 8. The 

e ~ e e t  way to prooeed ie to genediee Einstein’s action in the 8ame manner we con- 

and the metrio potential 4. Shoe we have 
P V  

etruoted oo-covariant equations k t h e  previous section. Hence consider the quantities 

involved in 

&re 

scalar density of power +4, the natural generalization of (2.29) is 

where 

(2.29a) 
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Conforming to the usual practice, we do not specify the matter Lagrangian 

a: aside from stipulating that it is a co-scalar with II = -4 and that 

(2.32) 

(2.32) is the natural generalization of 

-2 in general relativity. The factor 6 

sides of (2.32) to be -4. We note that the first line of (2.30) is manifestly gauge 

invariant. The second line has been written out because i t  is easier to derive the 

is necessary for the co-tensor power of both 

field equations from 

theories. 

and it will serve as a basis for our comparison with other 

Independently varying g and 8 ,  and using (2.30)-(2.32) we find 
PV 
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8 and 
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The in-invariant character of (2.29a) is clear since, as it has been shown before, p 

is a co-scalar of power -1. In principle, one can add to (2.29a) terms involving 

co-covariant derivitives of f j ,  and a term quartic in 8,  so that (c,cl = constants) 

(2.29b) 

The in-invariance requirement dictates that only the quartic term can appear. The 

middle term while having the correct invariance properties has no contribution in our 

theory because 

B , ,  - n k C L  B = o  - - 
CL 

where II is the power of 8.  

The first equality follows from the definition (Al. 14a). The 

second equality follows from (2.25) and the fact that n: = -1 for p . Including a matter 

Lagrangian, we can then state our action principle a s  follows: 

(2.30) 

61 = 0 (2.31) 
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Hence, 

(2.34) 
* 

= - 8rr apw + AgPV 

(2.35) 

where we have put 

equation we’ have derived previously for general units. Althaugh (2.35) appears to be 

an independent field equation, we shall show that this is not the case. In vacuum, 

82 = - A.  Eq. (2.34) is seen to be identical to the Einstein 

and it can be easily seen that the trace of (2.34) is identical to (2.35). More generally, 

the trace of (2.34) can be written as  

Comparison with (2.35) gives 

(2.34a) 

(2.36) 



is taken one finds 

-1 p v *fV = 8 p U  U 

and (2.36) is satisfied in this special case. 
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But this relation must be an identity by construction if  I is to be gauge invariant. 

To see this, we consider an infinitesimal gauge transformation. 

so that 

When the' above variations are put into (2.33) and 61 is required to vanish under such 

transformations, we find exactly (2.36). We remark that if Dirac'~!~) matter 

LagrZlDgiall 
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We have, in the above, derived the gravitational field equations in general 

units in three ways: a) by considering the effects of general units transformation on 

the Einstein equations, b) by co-covariant generalization of the Einstein equations and 

c) from a variational principle. The fundamental assumptions in all the above methods 

are of course the same. We have imposed gauge covariance as well as general co- 

ordinate covariance. In the first two methods the indeterminancy of p is clear, 

since it was introduced as  an arbitrary scale factor and no new equation could be de- 

rived for its determination. With the variational method, although a new equation was 

obtained, it has been shown not to be independent of the rest of the field equations. 

Even though an underdetermined system of equations may seem an undesirable feature 

in the theory, we must recall again in this connection the role of general covariance in 

Einstein's theory. The field equation (2.1) has only six independent components, due 

to the Bianchi identities. undetermined, 

and one can choose a specific coordinate system by imposing coordinate conditions. By 

the same token, one can choose to use any arbitrary units by imposing a gauge condition. 

Just as the appropriate coordinate system is determined by the motion of the observer, 

the appropriate gauge is determined by the observing instruments. They can never be 

This leaves four of the ten components of g 
w 

self-consistently prescribed within a covariant theory. Now we can understand how 

Dirac's LNH can be fitted into the structure of a gauge covariant theory of gravitation. 

It specifies the Einstein gauge which yields the mechanical units for which the general 

relativistic equations are valid. More importantly, it uses the numerical coincidences 

which have been derived by comparing Einstein and atomic units to determine the 

atomic gauge relative to the Einstein gauge. The LNH, which has no place in general 

relativity, becomes the observational input for specifying the gauge condition. Such 

input is necessary in the same sense that observation is necessary to identify laboratory 
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8 
1 

coordinates in general relativity. We shall describe a determination of B 

in this manner after the conservation equations have been presented. 

It should be remarked that when D i r a ~ ' ~ )  introduced his action principles in 

the form of (2.29b), p was considered a new scalar field in addition to Weyl's metric 

vector k . Furthermore, since Dirac's k is not related to B by(2.25), B p*p 

does ncrt vaish.  With this additional term in the Lagrzmgian, Dirac could ensure that 

no independent equation is derived for the variation of 8, only if he puts c 

(2.29b). With our introduction of I W  space and 8 as a metric potential, the indeter- 

minacy of B becomes a natural consequence of the theory rather than a contrived 

situation. A variational principle formally identical to the one given by the second 

I-I P *P 

= 6 in 
1 

line of (2.30) was also considered by Bicknell (21) . 
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2.4 Comparison with Scalar-Tensor Theories 8 
I The appearance of a scalar function fj as well as g in our action integral 

(2.30) can give the erroneous impression that we are dealing with a special case of 

scalar-tensor theories. In this section, we shall point out the essential differences 

by comparing in detail our gauge covariant theory with the scalar-tensor theories of 

gravitation. For the latter, we shall consider in particular the theory of Brans and 

Dicke(22) (BD) and its generalization as given by Wagoner(23), which we shall review 

briefly. 

WV 

(24) The BD theory is characterized by the action 

(2.37) 

is stipulated to be BD where ep is a scalar field and 

independent of the scalar field cp , and is related to the matter stress-energy tensor 

Tpv by 

is an arbitrary parameter. 

(2.38) 

just as in general relativity. Since it is only required that the integrand of the action 

be a scalar, one can in principle have arbitrary functions of cp as coefficients of R 

and 9, I.I 9: in (2.37). Thus, Wagoner(23) considered the more general action 

principle 
8 
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m 

(2.39) 

Here h, 4 ,  1 and $ are  arbitrary functions of the scalar field cp . Furthermore, 

is not necessarily the metric tensor, but is related to the line element by 
gPb 

(2.40) 

and R is the %xlar curvaturev1 constructed from g . 
PV 

By a representation transformation, Wagoner arrives at the action 

he prefers to work with: 

(2.39a) 

where 

(2.41a) 
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I 
I L 2 Ldcp.) + 4 h  J = nh- (2.41b) 

(2.41~) 

(2.41d) 

N 

cp is normalized so that n can be set equal to k 1. The possibility of n = 0 was not 

considered by Wagoner. However, it will be evident in the following that this possi- 

bility must be included for our comparison of the theories. In the representation 

(2.39a), Wagoner defines the matter stress-energy tensor a s  

(2.42) 

where G* is a constant. The field equations for both BD and Wagoner theories can 

be obtained by considering independent variations of the scalar and tensor fields in 

(2.37) and (2.39a). It can be easily seen, as  Wagoner(23) has shown, that the BD 

theory is a member of the class of theories considered by him. 

Disregarding for the moment the content of the matter Lagrangian, we can 

formally compare the various actions. It is easily seen that (2.30) is formally 

identical to (2.37) only if the parameter w takes the numerical value -3/2. Indeed, 

it was already pointed out by D e ~ e r ( ~ ~ )  and Anderson(") that the matter free BD 

theory is scale invariant only if w = -3/2. Since (2.30) is by construction scale 
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invariant, the conclusion we have reached regarding the BD parameter w is not 

surprising. For a comparison with the Wagoner action it is convenient to make a repre- 

sentation transformation on (2.39) with 

(2.43) 

Thus, 

+ h-l $-2 ' 5 ' + 4.h \ j -pv g ~ p , ~  cp,, + 2 h 11,-4 ] (2.39b) \ 2  (dcp / 

Formal comparison of (2.39b) with (2.30) shows that the Wagoner action can be re- 

duced to our gauge invariant action only if 

This in turn demands that n = 0 in the Wagoner representation (2.39a). As  was 

pointed aut earlier, this case was excluded from W a g ~ n e r ~ s ~ ~ ~ )  considerations. 

(2.44) 
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We remark that if we put h = - e p ,  4, = - 
(2.39) equivalent to (2.37) , (2.44) again yields 

as  required in order. to make . . 
Cp 

* 

3 (2.44a) w +  - 2 = o ,  

which is the condition for the BD action to formally agree with the gauge invariant 

action (2 . 30). 

The formal agreement discussed above by no means assures the equivalence 

of the various theories. When the matter Lagrangian from which the matter stress- 

energy is defined is taken into account, the non-equivalence of the theories becomes 

clear. First, by virtue of (2.38) and the fact that gBD is independent of cp, the BD 

field equations are consistant with 

(2.45) 

the conservation law of general relativity. We have already seen that in the gauge 

covariant theory (2.45) is no longer valid. 

tion law (2.27). Furthermore, Deser(’ 5, has pointed out that if (2.44a) holds the 

BD field equations would be inconsistant unless the matter stress-energy tensor 

vanishes. Hence, by construction Brans and Dicke have excluded the possibility of 

gauge invariance in their theory. Similar remarks ca.n be made about the Wagoner’s 

generalization of the BD theory, even though he does not insist on the validity of (2.45), 

for it can be easily checked that if n = 0,  (2.39a) implies TP = 0 unless @ is a 

constant. 

Instead, we have the modified conserva- 

P 
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It is important to note that in scalar-tensor theories, an independent field 

equation can be obtained for the scalar field. While (2.30) contains the scalar poten- 

tial 8, no equation is obtained for it. This lack of an independent field equation, 

I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
u 
I 
1 
I 
I 
I 
I 
4 

which is necessarily the consequence of the imposition of gauge invariance, under- ' 

lines the difference between Diracls theory and scalar-tensor theories. In this con- 

nection, we remark that Pietenpol et. dj27) has shown that Dirac's theory can be 

recast in such a way that the scalar field fl is completely decoupled from the other 

dynamical variables. It is easy to see that the transformation needed to accomplish 

this is precisely the one which transforms general units into Einstein units, and hence 

we are back in the domain of general relativity. The possibility of such a transforma- 

tion is self evident since it has been postulated to begin with. If Dirac's theory is 

indeed a scalar-tensor theory, such decaupling of the scalar potential from the rest 

of the dynamics would be a serious difficulty. But in a gauge theory the scalar poten- 

tial has no dynamical content and is not determined from the dynamics of the theory. 

Instead, i ts  determination is left as a gauge condition. We feel that an essential point 

should be emphasized, namely that while in a scale invariant theory gauge transfor- 

mations give different but equivalent representations of the dynamics, observations 

would always single out a set of units, and hence a corresponding gauge, so that 

Einstein units are inadequate i f  the observing instrument are atomic. 



36 

2.5 Conservation Laws 

In any action principle, corresponding to coordinate transformation (CT) and 

gauge transformation (G T ) invariance, there are associated conservation laws. In 

the case of the vacuum, Dirac(?) has already given the details of the derivation of 

these laws. For CT invariance, one gets the generalized Bianchi identities and for 

GT invariance, one simply gets an expression which is identically zero. 

When matter is present, the GT invariant conservation equation was derived 

in 2.3. Aside from ensuring that the scalar field equation is not independent, 

it does not seem to have any sensible physical interpretation. For CT invariance, 

one can proceed formally as indicated by Dira~(~).  After some tedious algebra, one 

arrives at precisely the conservation equation (2.27). Instead of producing all the 

details of this derivation, we shall pursue (2.27) further by introducing the energy 

momentum tensor of a perfect fluid, 

TPV - P (2.46) 

Projection of (2.27) parallel and orthogonal to up , yields respectively the energy 

equation 

. 

and the Euler equation 

(2.47) 

(2.48) 
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For a co-moving volume V = R3, an alternative form of (2.47) is 

(2.47a) 

We recall that the gravitational "constant" is now a function of space-time and its 

derivatives do not v d s h  ir~ general. Ecpmtion (2.47) and (2.48) show explicitly how 

the variation of G and f? modifies the energy and momentum conservation laws of 

general relativity when written in general units. 

Next we consider yet another conservation equation whose physical content is 

not contained in the action principle. In hydrodynamic problems encountered in general 

relativity, it is necessary to have an equation for the number density of particles in 

order for the system of hydrodynamic equations to be closed. The baryon number density 

is also conserved. The differential form of this conservation law is written as 

(2.49) 

I 
I 
1 

~I 
11 
1 

I 

If one further assumes that the particle rest mass m is constant, the above equation 

can be expressed as  

(2.50) 
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where 

is the rest  mass density. When the internal energy of the system is sufficiently low 

so that no pair creation or an-ihilation occurs, such a.s in classical fluid dynamics, 

(2.50) is known as the mass conservation law. 

Since Dirac’s LNH raises the possibility of non-conservation of baryonic 

number, we shall seek a generalization of (2.49) or  (2.50) so that baryon number is 

not necessarily a conserved quantity. 

Einstein units. Generalization of (2.50) according to our co-covariant considerations 

can be simply written as (see (Al. 16)) 

We assume that (2.50) is valid in 

(2.51) 
= o  

The co-tensor power rI of FJsl up can be deduced as follows. First, it is clear from 

its definition that up has power -1. 111 is the classical limit of p ,  the energy density 

and hence has the same power as p,  which we denote by II( p). Furthermore, we denote 

the co-scalar power of G by II(G). From the knowledge that * is an in-tensor, we 

can write (see 2.24) 
%v 

II(G) + n ( P )  = - 2 (2.52) 
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so that 

Consequently, equation (2.51) becomes 

(2.51a) 

where equation (2.25) has been used in the above reduction. In atomic units, particle 

rest  mass is constant and we obtain an equation for the particle number density 

(2.53) 

n(G) cannot be specified independently of the gauge condition. Examples of its deter- 

mination will be given in the next section. Finally, we note that the assumption of 

validity of (2.50) in Einstein units and its consequences in (2.51a) and (2.53) is con- 

sistant with our previous treatment of the gauge,covariant field equations. It is easy 

to see that in the classical limit, when p = 0, (2.47) is equivalent to (2.51a). But we 

emphasize that (2.51a) is an independent equation since it is assumed to be valid even 

when matter pressure is non-vanishing. 
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2.6 LNH as a Gauge Condition 

Since we do not yet know the functional form of G or 8, we have only the 

formal structure of a theory. To be able to solve dynamical problems, we must 

specify B which corresponds to choosing a gauge. We shall now give an example of 

how the LNH can be used to specify p in cosmology. 

G is a co-scalar, and we assume it has power II(G). In Einstein units, it has 

a constant value a. B has been shown to be a co-scalar of power -1. In Einstein 

units i t  is a oonstant which we can set equal to unity. Thus, generally, we can write 

(2.54) 

where the second relation results from a consequence of the LNH, namely that the 

gravitational constant in atomic units is inversely proportional to the cosmological 

time. We next consider (2.51a) in a cosmological context. 

for a co-moving volume v 
Equation (2.51a) implies 

or (nv Gp)'  = 0 

a result to be expected as a particular case of (2.47a) since when p 

(rest mass density). We therefore have 

0, p -, po = 

(2.55) 
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where the second relation states that the mass in a co-moving element increases like 

the square of cosmological time, which is another consequence of LNH. Combining 

(2.54) and (2.55), we find 

1 8 - -  t 

and 

II(G) = - 1 

- 
G = G f 3  

On the other hand, if we do not assume spontaneous mass creation and require 

- to n(G) - 1 DV - f3 

we obtain instead 

8 - t  

(2.56) 

(2.57) 

(2.58) 

(2.55a) 

(2.56a) 

(2.57a) 

(2.58a) 
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Thus we see that the LNH can be considered the observational input which 

determines the atomic gauge relative to the Einstein gauge, and therefore the function 

f!(t). With this known functional form of 

equations derived earlier are complete and solutions can then be obtained to yield 

and hence known variation of G, the field 

various cosmological models just as in general relativity. 

It should be remarked that we have not used LNH in the general form (A2.5). 

Rather, we are considering (A2.4a) and (A2.4b) as separate hypotheses which can be 

adopted in conjunction or separately. Our purpose is to use relations of the type 

(A2.4) to determine the gauge condition. Whether (A2.5) is consistant with the gauge 

covariant theory can then be subjected to tests using the dynamical equations. It is 

interesting to note that i f  both (A2.4a) and (A2.4b) are  used in the determination of 

f! , (A2.6) follows as will be shown in the following. 
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III. Cosmology 

Having determined the atomic gauge and hence a specific functional form for B , 

the dynamical equations can be applied for cosmological considerations. We shall as- 

sume, as  in the standard cosmological model, spatial homogeneity and isotropy. The 

line element can be written as 

2 ds2 = dt2 - R (t) yij dxi dxj 

where y . .  is the spatial part of this metric and is not a function of t. With appropriate 

coordinates, (3.1) can be written in Robertson-Walker form 
1J 

where k is a parameter which can be normalized to k l  or  0. We keep in mind that ds 

is in atomic units. When the occasion arises, quantities in Einstein units will be indi- 

cated by a bar over the symbol as has been done in $11. 

From (3. l), the field equations (2.34) become 

I 
I 
It 
I 
I 

(3.2a) 
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As in ordinary cosmology, the dynamic equation (3.2a) must be supplemented by the 

"energy conservation" equation (2.47) 

0 R (G* - 3 p  
GB B P + 3 R  - (P'P) = - P  

which, for any equation of state of the form 

2 
P = c  P S 

can be integrated to give 

Specifically C2.57, 2.57al 

2 -2 - 3 cs 
B 

2 
S 

-3 c 
B 

A) matter creation 

B) no matter creation 



For dust (c i  = 0)  and radiation (cf = 113) the previous equations specialize to 

B) Pm(t)- R-3(t) (3.5a) 

Equation (3.5) can also be obtained directly by gauge transforming the correspond- 

ing 'results in Einstein units, where as we know 

For either case (dust or  radiation) the relations between atomic and Einstein density 

can be written as 
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i. e. the atomic density ?(t) has an a priori unknown dependence on B that we para- 

meterize as B - '(') i. e. P (t) is a co-scalar of power II(?). However because of @. 52), 

we can rewrite (3.7) as 

P(t) = P(t) i3n(G) + 

with II(G) = 1 as  from (2.57)-(2.58). Remembering also that by definition 

we finally obtain 

(3.3) 

which coincide with (3.3). In the same spirit, we shall now present an alternative 

derivation of the two Einstein equations (3.2). In Einstein's units we have 

(3.10) 

&) = - * 4 1 6  (3p+p)S+4 iT9 
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Using (3.9) and the fact that 

@(T) dt = d7 (3.11) 

we have 

(3.12) 

which upon insertion in (3.10) yield (3.2) i f  we put 

(3.13) 

Using (3.3) to eliminate G ( @ )  p(B), we can now solve Eq. (3. Z ) ,  which we shall write 

as 

where 
8n 3 

Pmo Ro F = R(t) B(t) a 9 - 3 

(3.14) 
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Upon integrating, we find 

F/Fo 
dF 

I= r 
J 

a well-known equation in ordinary cosmology. For k = 21, 0, the solutions are  

respectively (A = 0) 

2/3 F(T) - T k = O  

F(T) cash$-1, T -sinh$-Jr k = -1 

For large T, we obtain 

Translating back into atomic units, the R(t ) vs t functions now read 

(3.15) 

(3.16) 

(3.17) 
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B) B = t/to ; 

= 2  90 

qO 

R(t) - $13 k = + l ,  

= 2  k = O  , 113 R(t) - t 
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(3.18) 

= o  qo 
R(t) - t k = - 1  , 

We must stress that the k = 0 case corresponds to an exact solution. For the case 

with A # 0, we can only give an asymptotic solution. It is clear from (3.14) that at 

large enough times the right hand side of(3.14) goes like ( T/3)ll2 F an so the solution 

is 

or 

I - 
(3.19) 

Equations (3.17), (3.18), (3.19) represent the main result of the gauge-covariant thedry 

a s  applied to cosmology. 

The final step necessary to make the presentation complete concerns the 

derivation of the relation between k, po and Ho. Introducing the notation 
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(3.19) 

wz can easily derive from (3.2) the following relations 

A = 2 Q o  + -  ‘A 
PC 3 2  0 

+ 2(1 +Qo) 

(3.20) 

o r  

2 
A 
3 

h . 2  ., k 
0 

a generalization of the well-known relations in Einstein units 

- 
k 

- ’ -2 = 2q0 + - 2 n  - = (2G0 - 1) Ti: + 7i 
p C  RO 

(3.21) 
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The relation between ?& and q is derived to be 
0 

h 0 j2 - ho Ho >” + (l+Qo) ( h o + H o  
‘0 = ‘0 ( h o + H o  2 

(ho + Ho) 

- HO 

- - - 
0 

pc - pc  80 Ho = Ho + ho , 

~ 
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(3.22) 

At this point we must discuss a very important point concerning qo and a 
0. 

In traditional cosmology the search for the value of the curvature has been pursued in 

the last sixteen years by Sandage and his collaborators. 

abundance of deuterium, an element very difficult to form but in the early universe, 

has proved to be a more sensitive test than any of the ones used by Sandage so far. The 

conclusion based on the abundance of deuterium is that the universe is open and the 

value of the deceleration parameter is much less than unity. This value is often mis- 

takenly identified with qo, thus ruling out the k = + 1, 0 cases for $ = t/to. 

However this is not right. The experimental value should be identified with Go, be- 

cause the cosmological models employed in the nucleosynthesis computations done so 

far correspond to Einstein units with A = 0. Knowing the experimental value of Go we 

can insert it in (3.22) and upon using (3.17) and (3.18) evaluate the right hand side 

and check for consistency. 

Recently however the 

The first case to be considered will be the one corresponding to no-matter 

creation (3.18). Since in the three cases the R(t) function can be written a s  

ta (a = 1 f 3  or  l), it is easy to check that (3.22) becomes 
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= -  l-a > 0 - - 1-a 
90 l+a 9 qo a 

- -  

(3.23) 

The value of ;;b is clearly less than one for any of the three curvatures k = f 1, 0; 

in particular Go = .5  for k = +1, 0 and to = 0 for k = - 1, whereas qo is zero 

or two. This clearly indicates how incorrect it is to compare qo instead of Go with 

observations. 

The case A) can also be treated. By writing R = t (h  tp, (b = 2/3 or  l), thus 

encompassing the three cases, it is easy to derive that 

(3.24) 

Here again, as  before, Go < 1 and in particular Go = .5 for k = + 1 and 0 and 
- 

= 0 for k = - 1. This completes our exposition of the cosmological consequences 40 
of the gauge - covariant theory of gravitation. 

corresponding to matter creation, seems at present favorable over B). In this case we 

would suggest that the k = -1 curvature case, with R - t h t, is more likely to be the 

model that best fits the cosmological data in that it yields the smallest value of Go, 

As will be shown later, case A), 

namely zero, as the growing evidence from the abundance of deuterium seems to indi- 

cate. At the level of numerical coincidences and Mach principle 

, 
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- MG - const. , 
2 

Rc 
(3.25) 

2 Dirac has suggested that R - t, for the matter creation case. In fact if M - t , 
G .V t- l ,  IE must go like t. Clearly such a behavior is only reproduced by the k = -1 

curvature case, without matter creation however. Within the matter creation case it 

is clear that a pure R - t is not an admissible solution for the A = 0 case. However 

it ought to be remembered that the Mach principle (3.25) is actually not incor- 

porated into the set of Einstein equations (3.2) and so  its use corresponds to an extra 

boundary conditions. This is most clearly seen i f  we write (3.25) as 

const. 
R2 

The product pG is a co-scalar of power -2 [@. 52) and (3.13)] and so 

= const. 

(3.26) 

(3.27) 

This implies BR = R = const., i. e. we must have a static Einstein universe in 

Einstein units. Case B),with p - t,is evidently excluded since it would imply R 

i. e. a contracting universe, a fact against all existing evidence. 

l/t 

For Case A) with 

matter creation, B - A 
solution. In this case the cosmological constant A must be different from zero as  is 

clear from (3.10) 

we have R - t, i. e. the universe expands, an admissible t ’  



(3.28) 

which in turn implies k = +1. Clearly such a model is not based on a very credible 

basis. Mach principle as  expressed by (3.25)-(3.27) is imposed upon the equations, 

it does not come out of them in a natural way and for all we know it could even have, 

should we ever be able to derive it from first principles, a function p(t) attached to i t  

that would alter (3.27). We. therefore prefer to stick to the exact solutions represented 

by (3.17), (3.18) and (3.19) without postulating any additional external boundary condi- 

tion. Finally we would like to comment on the existence of the large number % 
[see Appendix A2.31 

2 - -  78 
N 3 - 3  4TT -.L m P (e>” e l o  N t  (3.29) 

By asserting that (3.29 ) should hold for all cosmological times, Dirac concluded 

that one must require matter creation, But in the construction of the large number 

N , the present expansion parameter Ho was used to define the visible universe, 

whose coordinate boundaries may change with time. Hence the variation of N 

time need not imply matter creation. In fact by using pm(t) from case B), (3.5a), 

corresponding to non-matter creation, p, - 1/R (t) and (3.18) for either k = +1 or  

zero, the quantity 

3 
with 3 

3 
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2 goes exactly like t and no matter creation is needed. Granting that the LNH can be 

meaningfully used to fix the gauge function p(t), we must emphasize that the cosmo- 

logical solutions presented here are  valid only for large cosmological times and can- 

not be extrapolated to early times. If one does so, (14) one finds that the mean free ' 

time for nuclear interactions as well as the mean free time for photon compton scatter- 

ing are greater than the expansion time of the universe itself and therefore no nucleo- 

synthesis c d d  have taken place. 

As  repeatedly stressed by Dirac, the LNH is an asymptotic condition and it 

cannot be used to fix the value of p(t) at times when nucleosynthesis occurred. A new 

condition must be found. For exactly the same reason we cannot at this moment make 

any sensible comment on the existence of an horizon, since that again implies the 

knowledge of the function R(t) and therefore p(t) for any t. 



IV. Application to Local Gravitational Phenomena 

4.1 Equations of Motion 

It is well-known that the general theory of relativity predicts an advance in . 1 
I perihelion for bound orbits. In the gauge-covariant theory, the epochal variations of 

the gauge field @ and the combination GM, which were found to obey the law 

11 
GMB = constant (2.55) 

where 

M = I[nV 

will cause further secular changes in the orbital elements. While these changes are 

of interest per se , most important in this section, however, will be the application 

of these results to the three classic tests: the advance of perihelion, the deflection of 

light and the radar echo delay. 

Wz begin by writing the generalized geodesic equations (2.28), namely 

where 

e = O  for photons 

c = l  for particles 

56 
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, p a parameter along the geodesic. Since p can vary with time and uv = - 
.either as t-' for the matter creation case o r  as t, for the case without matter 

creation, we shall write in general 

dxp 
dP 

The absence of disturbances perpendicular to the ecliptic allows us to characterize 

this plane by 8 = n In this case the Schwarzschild metric is 2 '  

2 2  2 2 ds = B(r,t)dt2 - A(r,t)dr - r dcp 

where 

with 

In cylindrical co-ordinates, the geodesic equations (4.1) are  

(4.4) 
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Rather than equation (4.7), it is more convenient to use the relation 

which paraphrases 

gpv ul-1 uv = € 

which in turn follows directly from equation (4.1). By defining new variables E and J as 

dt E = B  - 
dP 

. .  

(4.10) 

(4.11) 

(4.12) 



2 9  
ap J = r  

equations (4.8) and (4.9) may be written in the equivalent forms 

d - JB = 0 ap 
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(4.13) 

(4.14) 

and 

2 € i  2 
z a p  E d  l o g E = -  2B . A(5) + 2 (i) + [$-(:>"I (4.15) 

In  the standard theory, where p = 1 and A, B are independent of t, E and J are the 

conserved energy and angular momentum respectively. The gauge-covariant theory 

i~~%-ices secular changes in E and J. Eliminating the variable p, we arrive at the 

equations of motion parameterized by the time t, 

2 dY E Jfl = r dt g fl = Jo = constant 

and 

(4.16) 

(4.17) 

(4.18) 
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The equation for the trajectory is obtained by eliminating the variable t between (4.16) 

and (4.17), 

(4.19) 

The equations of motion derived so far apply equally well to particles and photons, de- 

pending on the choice of e .  

4.2 Perihelion Advance (29) 

Since E varies slowly with time, we may replace the instantaneous value in 

(4.19) by its average over one revolution, E. The variable J, defined by (4.17) is 

also a slowly varying function. Thus 

Since equation (4.20) is formally identical to the standard relativistic orbit equation, 

we can immediately write down the result for the perihelion advance per revolution 

for a quasi-elliptic orbit, viz. 

6n MG (4.21) L ACP = 

where L is the semi-latus rectum, related to the ap- and peri-centers r+ and r - of 

the ellipse by the formula 

1 
I 



If by a and e we denote the semi-major axis and eccentricity, we have 

2 L = a(1-e ) 

= a(l f e) r, 
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(4.22) 

(4.23) 

and our aim is to connect a and e to i? and J, whose evolution with time is known. 

The pen- and ap-centers are given by setting 

in (4.20), from which it foiiows that 

Solving for E and J, we get 

(4.24) 

(4.25) 
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and 
1 

-2 E 
2 2 - rL - r 

2 - r 2 
r+ 

(4.26) 

The definitions (4.23) enable us to write, to first order in GM/a 

I 
,1 

J~ = GM a (1-e2) (1 + - GM 2) 3 + e 2 ,  
a 1 - e  

and 1 
-2 GM E = 1 - ~  

(4.27) 

(4.28) 

From (4.27), we find 

I 
I 

2 
L + e  G M J  (4.29) 

1 

To first order in GM/L, we therefore find that 

(4.30) 



which is a constant. That is, the perihelion advance per revolution is independent of 

time. Since GM is proportional to p - l  

precession has the same value as in standard theory. 

Wa conclude that to first order in GM/L, the 

For future reference, we shall now deduce how the individual elements e and a 

vary with'time. Their behavior is governed by equation (4.18). As we are  interested 

only in near-Newtonian Keplerian orbits, we set 

E = 1-E' 

and so by equation (4.28) 

E'=- GM 
2a 

(4.31) 

(4.32) 

n 

. 
Using the expressions for A and B (4.6), we finally arrive at 

n 

- =  dE' i [  - GM J' + - GM +2E'] 
dt B 3 r r 

(4.34) 



Averaging over one period, we find 

(4.35) 

where we have used the following averages over a Keplerian orbit 

- 
-3 - 1 

- 3 2 3f2 a (1-e ) 
r 

(4.36) 

Further manipulation of (4.35) leads to 

d 5  2 a (ZE') 312 
t J  

- =  
dt 

whose quadrature yields 

- GM log e)  Y 

J (1 - (2 E:) 
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(4,37) 

(4.38) 

I 
t 
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n 

I 
8 
.I 
I 

a = 8-1 
aO 

(4.39) 

(4.40) 

We conclude that the semi-major I axis and the eccentricity both vary monotonically 

with time. 

4.3 Radar Echo Delay (29) 
I 
I 
I 
I 
I 
U 
8 
I 
I 
I 
I 

For several years Shapiro and his co-workers have been engaged in measuring 

the de!q in the rxk  s $ p d  h r o x k a t  in the direction of Mercury and bounced back. 

The delay is caused by the apparent slowing down of the speed of light near the rim of 

the sun during grazing incidence. Here we are interested in changes in the result of 

this experiment when carried out over a long period. The changes come from two dif- 

ferent, though not unrelated causes. First, had the planets (Earth and Mercury) re- 

mained fixed in their tracks, the gauge-covariant theory predicts a slow variation in 

successive time delay measurements; second, the fact that the orbital elements them- 

selves change (as has been shown in 4.2) means that the light ray has to span different 

Earth-Mercury distances as time goes on. It will be shown that the first kind of vari- 

ation goes like @-l , and the second kind of variation enters only almost as 8 - l  , be- 

ing modified by a logarithmic term. 
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1 
I 
I 

Since the photon is massless, the energy and angular momentum per unit 

mass become infinite. The ratio b = J/E remains finite, however, and is what is 

known in the standard theory as the impact parameter. The equations of motion are 

then 

- - -  GM rl E d t  B r  t 

(4.41) 

(4.42) 

To evaluate the approximate changes in b, we need to integrate (4.42) approximately 

by using the straight line approximation to the trajectory (solution to (4.41) with 
I 

- 8  A = B = l )  

2 2 r2 = bo + (to - t) 

where bo, to are constants. There are two cases. 

, then Case A. If p = - , q = -1 0 
t 
t 

(4.43) 

(4.44) 
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integrates readily to 

t-to /- 3 /” k = [ a +  0 0 

t 
CaseB. If p = , q = 1 ,  then 

gives 

Since (7 ‘* GM ’ J i s  extremely small, being of the order 
0 

Ho (GW0 gravitational radius of a star - - =  
2 radius of universe 

C 
C 

we can write in both cases 

b bo , constant 

(4.45) 

(4.46) 

(4.47) 

(4.48) 

(4.49) 
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Equation (4.41) is then formally the same as in standard theory, and gives the 

0 
same expressions for the time required to go from r (r = bo B * (ro) M b ) to r, i. e., 

0 0  

r - j -  /- 8 
I + GM iTF (4.50) 

0 0 r t(r,ro) = ,/- + 2GM log 

1 with the proviso that MG goes like ,9-l . 

The maximum round-trip time, when the planets are in superior conjunction 

and the ray just grazes the sun (r Rs) is given by (M = Mercury, E = Earth, 8 0 
S = Sun) 

I 
r + E q. - 1 - - /- + /- + 2 M S G  log 

RS 2 tmax E M 

8 
I 

(4.51) 
r +/- + 2 MS G log M M 

RS 

+ MS G f rM - R S ) Q  
\ rM + R s  

where 
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r = radius of Ea.rth's orbit E 

r = radius of Mercury's orbit M 

RS = radius ofSun 

In 4.2 we concluded that the semi-latus rectum and semi-major axis all vary like 

0 -1 r = r  $ 

The round-trip time is  then 

(4.52) 

4 r  0 0  r 
= 2 p - l  { r l  + rM 0 + 2ws G& [I + log E - 2 log 8 1 . )  (4.53) 

R: 
max t 

0 0  
0 = 2 ( r E  0 + r 0 M tmax 

then 

0 
- - $-I r - 8(Ms G)o log B + 4(Ms G)o log 3 ] 

RS tmax L 

The maximum round-trip excess time delay is given by 

(4.54) 

(4.55) 



70 

I 
1 
I 
I 
I 
I 
i 

0 - - 0 - 2 r E  0 - 2 r M  0 
( b  Qmax max 

wnere 

(4.57) 

In equation (4.56) the second and fourth terms correspond to orbital expansion. The 

third term arises from changes in the solar radius and the first term is attributed to the 

change in GM. 1 

I 
I Arguments based on homological transformations give the following relation 

for the radius of the sun 

1 m 
R - G g l  M 

where 

n + k ,  - 4 n - 1 +k,  + k, - 0 . L a  , m =  
g1 - n + 3 + 3 k l  + k 2  1 n + 3 + 3 k l + k 2  

(4.58) 

I 
1 
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7 1  

and n, k and kg are  the indices in the nuclear source term and the opacity, i. e. 1 

k2 N c = g 0 p T  n , k = k o p k l T  

For the p-p chain, n = 4.5, and for the case of Kramers' opacity, k = 1 and 1 
= - 3.5. With these values, we find k2 

3 G 1 MS - lag - + - log - log - - - RS - 

R: 
'I G" .I 

This value of log 0 RS may be used in equation (4.56). 
RS 

4.4 Deflection of Light (29) . Conclusions 

The photon trajectory is given by 

W e  have seen in the previous section that during its entire journey, the ffimpact 

parameterff b is almost a constant, bo. 

(4.60) 
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W e  conclude that the deflection of a light ray is given by the standard ex- 

pression - GM , except that since GM 

or  decrease with time depending on whether there is matter creation or  not. 

8- l  , the deflection of light will increase b 

Pausing at this point to look backwards, we see that the first test, the peri- 

helion precession of a planet per orbital period has a constant expression equal to the 

standard theory. But the orbital period is given by Kepler's law 

where 

(4.61) 

and so changes with time as 8-l , The net result is that the rate of perihelion ad- 

vance of the planet is given by 
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where 

For Mercury, this amounts to (43"/century) 8 .  

The third test, the bending of light by the sun, suffers from the handicap that it 

cannot be monitored at all times, 

The most promising test is the echo-delay experiment. Continuous measure- 

ments of this effect can be made for planets and artificial satellites near superior con- 

junction. Of course, hardly any measurement known to us has been so much distracted 

by the difficulty of distangling the relevant parameters from a maze of other celestial 

variables . 
As our expressions have shown, the measured quantities at t = to are  the same 

as in the standard theory. Only by comparing data over a long interval of time, can a 

difference be established between the predictions of the gauge-covariant theory and 

those of the standard theory. 



4.5 Planetary Orbits 
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Instrumentation technology has permitted a high accuracy measurement of 

planetary distances and orbital periods in atomic units. It has been suggested that 1 

such measurements could in the near future reveal deviations from predictions of the 

standard gravitational theory, such as the secular variation of the orbital period T 

of two gravitating bodies. In this section, we shall derive some predictions of the 

gauge covariant theory relevent to such measurements. 

nnnnting - the nvhitd perind ~ n d  rndiiis in Einstein units bv T. E - from the 

transformation law (2.4), we have 

where T, R are the orbital period and radius in atomic units. Since T and 

are constants, we find 

. 
- = - = -  T it i 
T R e 

(4.62) 

(4.63) 

We have already seen that the macrosco& mass M of an object satisfies the relation 

(see eqs. (2.55), (2.47a)) 

I 
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Consequently , 

-II(G) II(G) - 1 
GM - @ B = B-1 

. . 
T R (GM)' 
T R GM 
- = - =  (4.64) 

It should be noted that in the gauge covariant theory of gravitation, the product 

GM rather than the gravitational constant alone causes the variations of orbital periods 

and radii. If continuous creation exists, (2.56) and (4.63) give 

E 

t 
I 
11 
1 
1 

. 
1 = -  T R 

- = E  T t 

The above equations immediately yield 

T , R - t  (matter creation) 

(4.65) 

(4.66) 

On the other hand, i f  only the gravitational constant varies and no matter creation is 

postulated, (2.56a) and (4.63) yield 
E 
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(no matter creation) 

(4.67) 

T, R - t-' (4.67a) 

Equation (4.63) from which the relations (4.65) o r  (4.67a) have been derived, 

can aIso be obtained by considering the equation of orbital motion. From (4.7) and 

(4.8). with A = B = 1 and p = t, we obtain 

(4.68b) leads immediately to 

2 .  
J B = B r cp 5 h = constant 

which if substituted into (4.68a) gives 

+! 
B 

r GM 
2 

+ - = -  .. h2 r - -  
$2 r3 r 

(4.68a) 

(4.68b) 

(4.69) 

(4.70) 
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H 
I 

1 - and use equation (4.69) again; (4.70) can be re- 
r We define a new variable U 

written as 

The above is recognized as the standard equation for an elliptical orbit if the right 

(4.71) 

hand side is a constant. But since we expect the time scales of variations of G ,  M 

and ,E? to be long compared to the orbital period, we can consiaer me ormt as aescri- 

bing an ellipse whose parameters undergo secular variations as dictated by the r. h. s. 

of (4.71). For  simplicity, we consider only a circular orbit whose radius can be 

found from (4.71) to be 

Elimination of h from (4.72) and (4.69) gives Kepler's third law 
II 

1 in its standard form. Differentiation of (4.69) and (4.73) gives 

. 

(4.72) 

(4.73) 

(4.74) 
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. 
(4.7 5) 

It should be remarked that the second derivation while more elaborate is by no means 

logically more complete than the first. We have presented both derivations to empha- 

size consistancy of our reasoning at a transformation of units and caution against 

ad hoc introduction(15) of dynamical equations without a sound theoretical framework. 

Let us rewrite equations (4.74) and (4.75) as  follows: 

. 

In the framework of the covariant theory, we found earlier that 

(4.76) 

(4.77) 



Hence, 

2 (a) with matter creation, M - t , 

. 

- .  
,) 1 .  I j @) without matter creation 

i 

-7 

~ 

. , /  

I 1  
- 

(4.78b) 

(4.79 a) 
' .  

(4.79 b) 

There exists in the literature what Dirac(l0) has called a primitive theory of 

variable gravitational constant. In this theory, the dynamic equations of general rela- 

tivity or  their Newtonian limits are considered valid, but G is allowed to be a function 
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of time, This theory also gives variations of T and R as a result of the variation of 

G. In fact, the results are obtainable as a limit of equations (4.74)-(4.75) when B is a con- 

stant. Thus we find for the primitive theory with M and f3 constant, 

. 
(4.80) 

which are  the relations used by Shapiro (32) and Van Flandern (33) , 

Comparison with (4.78)-(4.79) shows that for any given measurement of T/T, 

the gauge covariant theory gives different interpretations for the variation of GM than 

the primitive theory. However, i f  R/R and T/T are measured simultaneously, 

(provided sufficient accuracy is attained), one can in principle distinguish the- two 

theories, since the ratio of the two measurements should be 1 for the gauge covariant 

theory and 1/2 for the primitive theory. 

Given the present age of the universe to be of tne order of ten billion years, we 

expect from (4.78) and (4.79) that the measured fractional variation of the orbital 

period would be -21 x lo-" year-' , where the positive sign applies if multiplicative 

matter creation exists. Recently, Van Flandern(33) reported a measured value of 

T -1 - T = (15 k5.4) X year (4.81) 

for the difference between the atomic period and the ephemeris period of the moon. If veri- 

fied, the gauge covariant theory would imply the existence of matter creation. However, 

confirmation of Van Flandern's result has not been forthcoming. 



4.6 Stellar Structure Equations 

In the gauge covariant theory of gravitation, one accepts the possibilities of a 

gradual weakening of the gravitational field and continuous matter creation. Thus, a 

star in hydrodynamic equilibrium may undergo secular variations induced by the varia- 

tions of gravitational field strength and the total mass of the star. In this section, we 

apply the field equations (2.34) to the problem of stellar structure. Assuning spherical 

symmetry as usual,' the line element and the velocity field can be written as 

(4.82) 

(4.83) 

where y is a function of r and t. It can be easily seen that 

After some lengthy algebra, the non-trivial field equations are, dropping terms involving 

the cosmological constant 

1 

i' 
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2 2  a ar [r(l-e-2')] = 2G {4rr r (py + p(y2 - I))] 

. ' 2 .  -2$ 1 -2$ 2 P 
= 8nG [py + p(y2 - l)] + (12 p - 2 - 'I e'2' 2e-- 1-e I r r 2 B B2 ' 

(4.84~) 

1 
1 
I 
I 
I 

(4.84d) 
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where dots and primes stand for partial differentiation with respect to t and r. 

We have formally included the radial as well as time dependence of 8 .  But we 

must point out here the main difficulty that remains ahead for the gauge covariant 

theory. In $2.6, we used the LNH for the determination of f~ in the context of homo- 

geneous cosmology, and the question of spatial variation of B did not arise. More 

generally, there is no a priori reason to exclude a spatial variation, and the LNH is 

therefore insufficient for the determination of the gauge function. In this sense the 

theory is incomplete. However, if one considers the time variation of f3 indicated in 

$2.6 as a cosmological effect and if one is interested in the cosmological feed back to 

local physics, such as the problem of stellar structure considered here, it appears 

reasonable to use the cosmologically determined f3 for local computations. In the 

following we shall assume f~ = @(t). 

The field equations 

approximation. Ikopping 

(4.84~) become 

(4.84) can be further simplified if we make the slow motion 

v2 terms, we have y 1. Equations (4.84a), (4.84b) and 

.n  

2 -2g) a [r(l-e-2Jr)l = 2G(4n r2 p)  - ( 3  - B' + 2 B ; > r  e a r  B 2  
(4.85a) 

.. . -2 Jr 2 g  e-2J' - 1-e 2 = 8nGp + ( 2  E - 2  E i- r r 

(4.85b) 

(4.85~) 



Using (4.85b), (4.85a) can be integrated to yield 

where 

r 
M(t,r) = 4n p ( t , r l )  rf2 dr' 

0 

(4.86) 

(4.87) 

Since we are  considering cosmologically induced variations of stellar structure, e /  
is of order l/'ro, where 'r0 is the age of the universe. For a local system, 

1 - I C  12 / /  .I I ___- I----- ...-- 4 C L ,  ---I--:&- ,z 1:-I-L 
\I/ L ~ J  1~ I [we  i m v e  ~ U L  ~iie v ~ i u u ~ t - y  vi ugiit- c = l j ,  SG 

which is formally analogous to the standard stellar equilibrium solution in general 

relativity. But in the present context both G and M are  functions of time. 

In the same approximation, (4 .85~)  and the radial component of (2.48) can be 

written as 

(4.88) 

92 = - $ ' ( P + P )  dr  

where (4.86a) has been used. We finally arrive at the stellar structure equation 
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3 
* 2 - -  G 
dr r (r - 2 GM) 

( p  +p)  (M + 417 r ,p) (4.89) 

1 This equation indicates again that any cosmologically induced variation of stellar 

structure is, 

G and M. Consequently, classical results such as the luminosity of a star 

to an accuracy of (r /to), implicitly contained in the variation of 
(12,13) I 

7 5 4  L - G  M C1 

r I and the polytrope relation(12’ 13) ( p - p , r i 1 + l/n, n = polytropic index), 

I 3r-4 = const. , R 

I 
remain valid up to the same accuracy. 

.I 

(4.90) 

(4.91) 
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4.7 Surface Temperature of the Earth - Geological Effects 

Cosmological ideas such as the ones presented in this paper are sometimes 

tested using arguments based on the acceptable temperature of the earth in the past 

few billion years. Several arguments against and in favour of a time varying G have 

been published over the years but no f i rm conclusion can yet be reached. 

The absolute luminosity of the sun is known to vary as (12913) 

7 5 4  L - G  M p 

where 1 is the mean molecular weight. Defining an effective temperature as 

@ = -  L 
2 

41-r R 

(4.92) 

(4.93) 

where R is the Sun-Earth distance, it is easy to see that even if  G and M are con- 

stant, the temperature was lower in the past since p was smaller. Simple computa- 

tion show that 3 x 10 

cated by geological data(34), even if  one adds to Teff about 30°K due to C02-H20 

green house effect. If G - t-' and M remain constant, the smaller 1 in the past is 

more than balanced by the variation of G and one can get Teff = 360'K at 3 x 10 

years ago. If however M also varies, M - t , the situation is again similar to the 

original case, with lower L and Teff in the past. 

9 years ago, Teff = 230°K, much lower than what has been indi- 

9 

2 
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We should point out however that the above estimates of Teff, evaluated from 

(4.93) cannot be directly compared with temperatures derived from geological data 

since the green house effect and possibly other geo-thermal effects have been ignored, 

so  that Teff does not represent the physical temperature at the surface of the earth. 

Adjusting the chemical composition of the atmosphere by introducing a small amount of 

ammonia, Sagan and M ~ l l e n ' ~ ~ )  were able to get such a large green house effect that 

the lower luminosity in the past was amply compensated for, and a higher "surface" 

temperature obtained. Consequently, the past thermal history of the earth cannot be 

used to argue conclusively for or against Dirac cosmology by estimating the variation 

of the solar constant alone. A more thorough analysis of the problem, including the 

varying green house effect with a varying solar constanhis now being attempted and the 

results will be published elsewhere. 

Other geophysical effects of a varying G cosmology are often discussed and we 

shall limit our discussion here to showing that the present theory does not contradict any 

well-established fact. 

An update survey of implications for geophysics as arising from non-standard 

cosmologies can be found in a paper by W e ~ s o n ( ~ ~ ) .  Ws shall discuss here two major 

effects: the expansion of the Earth radius and the spin-down. Thorough discussion 

and pertinent references can be found in the paper by Wssson. 

Having shown that in the present theory the hydrodynamic equations governing the 

stability of a star are unaffected by the gauge-function p(t), we can write down the ex- 

pression to be satisfied by R, G and M,  Eq. (4.91) 
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1 - -  r -2 
3r-4 G3r-4 
- 

R -  M (4.94) 

which yields the desired results for the time variation of the Earth's radius, namely 

A) Matter Creation 

I .425 
2r -3 R(to) - 21- -3 
3r-4 to 31- -4 R(to) = - - - - 

.319 

B) No Matter Creation 

(4.95) 

(4.96) 

for t 

discusses 21 of them) lead to the result 

= 15, 18 and 20 billion years. Several independent determinations (Wesson 
0 

fi(to) = (. 5 - .6 )  mm/yr 

for the last 500 million years. 

(4.97) 

8 
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Let us now look at the spin-down effect. It seems to be an accepted fact that the 

Earth is not only expanding but also slowing down at a rate of 

msec 
'e6 century (4.98) 

We have already proven that vcitb. the gauge-covariant theory, the conserved angular 

momentum is given by Eq. (4.69), from which we deduce that 

2 P -  BR 

or 

. . 

or  finally using Eqs. (4.95) and (4.96) 

. 576 
I 

. 576 I 
8 msec 

century p = -  3r-3 p = 3r-3 I -480 3r-4 to 3r -4 
.432 

again for to = 15, 18 and 20 billion years. 

(4.99) 

(4.100) 
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Since the Earth is slowing down, $ must be positive, which implies that 

r > 413 or lr < 4/3 

By fitting an expression of the type p a p  to the numerical values of p and p for the 

Earth(3 7), one concludes that 

4.5 s r s 7 

The coefficient (2r-3) f(3r-4) changes very little for r = 5 or I? = 7. In one case is 

. 636, in the other .647. We shall take . 64, so that 

.272 

i( to) = 1 .226 (mm/yr) 

.204 

For case B), 1/(3r-4) varies from 1/11 to 1f 17 for I' = 5 and I' = 7, so that 

(r = 5) 

.038 

.032 .(mm/yr) 

.029 

V = 7 )  

.025 

.021 (mmlyr) 

. 019 

(4.101) 

(4.102) 
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In case A), cosmology contributes from 40% to 50% to the total value (4.97) depending 

on the age of the Universe. In case B) the contribution is only of few percents 

The variation of 6 with r is even smaller. In fact, for case A) the coefficient 

(r -2)/(3r -4) varies between .272 and .294. For case B), (3r -3)/(3T'-4) varies be- 

tween l. 091 and l. 059. We shall take .28 for the first case and l. 07 for the second. 

W,? thenhme 

161 I 

I .121 

,616 
I 

I .462 

Case A) contributes at most lo%, whereas case B) can contribute as much 38%. 

Either case is found to lead to perfectly admissible results. 

(4.103) 

(4.104) 
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V. FINALREMARKS 

In this paper we have presented a gauge covariant theory of gravitation, charac- 

terized by a set of equations which are complete only after a choice is made of the 

gauge function B(t). Among an a priori infinite number of choices, two seem particu- 

larly appropriate: Einstein gauge ( e  = const) and atomic gauge. 

Since no general principle has yet been given as to how to choose p(t) in atomic 

units, we have suggested the use of the large dimensionless numbers relating atomic 

and gravitational constants. Several results, ranging from cosmology, planetary or- 

bits, stellar structure and earth's geology are  then derived and shown to be consistent 

with a variety of well-known facts. 

Even though such proofs of consistency must be given, they constitute a neces- 

sary but not sufficient raison d'etre for such a new theory. 

Other more fundamental reasons exist which justify the study of a covariant 
1 

I 
I 

I 

I 

I theory of gravitation. The generalization is being pursued having in mind the relation 

between gravitational and atomic phenomena, a relation that in spite of having been 

discussed in the scientific literature with increasing frequency has not yet led to a 

satisfactory picture. Gravity is however being considered in a much broader light and 

i ts  hoped-for relation to the structure of matter is more closely investigated, the ulti- 

mate goal being the unification of all  types of interactions, and endeavor that has been 

recently crowned by encouraging success. 

I 

From the theoretical point of view, Weinberg and Salam have convincingly 

conjectured that electromagnetism and weak interactions can be combined into a 

unique non-Abelian gauge theory. Experimental evidence is so far in favor of such 

I 
I 
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a theory. (Einstein theory of gravity is also non-Abelian). From the experimental 

point of view, strong interactions have recently been shown to exhibit scale invariance, 

a property so far possessed only by electromagnetic interactions. 

Seemingly dividing barriers have either fallen or become more brittle upon 

close inspection and the gate seems to have finally opened to a flood of new interesting 

though still unrelated proposals. 

In this paper we have focused our attention on a direction so far unexplored, 

namely scale invariance. We do not claim to have shown that gravity must be scale 

invariant, but only that a gravitational theory endowed with such a property, leads to 

no contradictions with well established facts ranging from geology to cosmology. 

Since local gravitational phenomena have been historically the major cause of 

the high rate of casualties for other generalizations of E'mstein equations, we have 

given a detailed presentation of the three classical tests, with the result that at any 

given instant of time the present theory yields the same results as ordinary standard 

theory. 

Having passed that hurdle, we have indicated how the present theory can en- 

large our interpretation of several phenomena, not ultimately being the only consistent 

theoretical framework which can accommodate a possible variation of the gravitational 

constant with cosmological time, a possibility entirely excluded by ordinary Einstein 

equations. 

Besides passing several crucial tests, a theory must also be able to make pre- 

dictions. In this respect we believe that the present theory can solve what has been a 

major difficulty concerning the cosmological constant A ,  within the framework of 
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gauge-fields and broken symmetries. Although it is not known whether A is needed to 

explain cosmological facts like the magnitude vs. red-shift relations, it is unquestion- 

ably true that the stability of galactic clusters put limits on its magnitude. In fact A 

must be less than om". 

Since the cosmological constant A can physically be interpreted as the vacuum 

contribution to the energy momentum tensor of matter(38), it is possible to derive the 

following expression(39' 409 41) within the framework of the gauge-fields, 

some 50 orders of magnitude larger than the previous value. This large discrepancy, 

which has even been considered as  undermining the credibility of the Higgs mechan- 

ism, (39) can be drastically reduced if not totally accounted for in the present theory. 

In fact, on the basis of (2.22) and (2.56), A must have a time dependence of the form 

t 2  
= A, ( e )  

If A today, A(t) was achieved at t M sec, a time not drastically 

different from the quoted t = 

is usually performed. The computations can be improved further once we have a 

better understanding of the behavior of B(t) at early cosmological times. In fact we 

have reasons to believe that p(t) scales faster than t-l,  thus moving 

earlier times. 

0 

sec, Le. T R, 300 Gev at which the computations 

sec to 
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The early time dependence of @(t) can be searched for by studying, for in- 

stance, nucleosynthesis (t M 100 sec) and demanding agreement with the observed 

abundance of He4 and D. 

together with (2.56), accounts exactly for the 50 orders of magnitudes, i f  one has  

Conversely, one could look for a @(t) at early times that, 

reasons to believe that the gauge-fields physics is indeed the relevant physical scenario 

governing early cosmological times. 

An alternative is to fix B(t) by trying to avoid the Big Bang singularity. Two 

of the authors have been working in that direction and preliminary results are en- 

couraging. A B(t) can indeed be found that satisfies the condition R(0) > 0, with 
.. 

3p + p > 0. The whole question concerning the role of the present theory in the early 

cosmological times remains to be studied. 

Ln conclusion, a great deal of future work remains to be done both from the 

standpoint of internal consistency, comparison and relation with theories of funda- 

mental interactions as well as direct comparison with observations. 

It is our feeling however that the preceding analysis has shown how a gauge 

covariant theory can enlarge the possibilities of making one step further towards a 

unified theory of the various kinds of interactions, without contradicting any well 

accepted facts. 



Appendix I 

Co-Tensor Analysis 

In this section, we shall first review the essential features of Weyl’s geometry. 

Co-tensors are  then defined in Weyl space. Some mathematical relations in co-tensor 

analysis, pertinent to the main text of this paper will be derived here. 

The fundamental postulates of Weyl geometry are: 

* 
(A) There exist affine connections such that parallel transport of a vector 5’ 

can be defined as: 

where 

*rtx = *rrv 

(B) The change of length of a vector by parallel transport is given by 

(Al. 1) 

(Al. 2) 

(Al. 3) 
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Note that the metrical properties of Weyl space are specified by both g and kh.  
I-lv ’ 

B 
Since lengths are not assummed to be preserved, the scale vestor kX gives their variation 

under parallel transport. 

Let 

(Al. 4) 

It can be easily shown that the affine connections are related to the metric and scale tensors 

bY 

Hence 

c1 where rvx  are the Christoffel symbols defined in terms of g as in Riemannian 
PV 

geometry. AS usual f = a f / aX* .  
, h  

If we define a curvature tensor in Weyl space by means of parallel displacement 

of a vector along a closed curve, we get analogous to the Riemannian case 



The associated contracted tensors * R and * R can be written as PV 

h * 
R =  2’ *R = R - 6 k x  + 6 k  kh 

CiV ;I 

(Al. 6) 

(Al. 7) 

(Al. 8) 

where R 

Clearly, if k 

the Riemannian case and Weyl space inthis limit becomes Riemannian space. We 

note also that It ; If is used in this paper to denote the normal covarimt differentiation, 

and R are the Ricci tensor and scalar curvature defined in terms of g 

Ci 

WV’ i-lv 
= 0, the affine connections as well as the curvature tensors reduce to 

defined using rather than * C l  rv 

Next consider a general scale transformation of the form 

ds -, ds’ = 4,(x)ds (Al. 9) 

98 
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Since 

ds2 = gpv & dxv 

and & being a coordinate differential does not change under scaling, we have 

(Al. 10) 

(Al. 11) 

(AI. 11) can be recognized as a conformal transformation. We remark that given 

(Al. 10) as the definition of the line element, conformal transformation and scale 

transformation imply each other. The latter is also called a gauge transformation 

and we shall be using these terminologies interchangibly in this paper. 

From (Al. 3) it can be shown that under the scale transformation (AI, 9), k 

transform as follows: 

It is easy to show using (Al. 11) and (Al. 12) that 

formation. It is of course not a tensor. But the 
* 

(Al. 12) 

*I" is invariant under gauge trans- vh 

tensor properties of * P  R, , 
* I ,  

* 
' 

R can be easily established. Furthermore, since 'r; is gauge invariant, inspec- 
* * 

tion of (Al. 6) and (Al. 7) shows that R t x p  and R are also gauge invariant. 
clv 
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Now we introduce the notion of a co-tensor. Let A denote a tensor of arbitrary 

rank, i. e. is under coordinate transformations, A has tensor properties. If in addition, 

under gauge transformation (Al. 9), 

A .+ A’ = 8 A  (Al. 13) 

then A is called a co-tensor of power II.. In particular, if !J = 0, A is called an in- 

tensor. Thus, we see that Rp are in-tensors. From (A . l l ) ,  g is 

a co-tensor of power 2. Since gpV is‘ the inverse of g 

power -2. 

* * 
V X P ’  Rl,lv P V  

it is a co-tensor of 
UV ’ 

1’ Clearly, products of co-tensors are again co-tensors. In particular, let A 

A2 be co-tensors of powers II and II,, thus 1 

A = A  A 1 - 2  

* 
is a co-tensor of power II = II c n,. Consequently, R is a co-scalar of power -2. 

(In the present terminology, scalar and vector are special cases of tensors). We 

mention the obvious fact that not all tensors are co-tensors. For example, R 

R do not transform like (Al. 13) although they have tensor properties under coordinate 

transformations. 

1 

and 
I-lv 

The extension of the concept of tensor to that of co-tensor requires a corresponding 

extension of covariant differentiation. It is clear that the covariant derivative of a 

co-tensor is in general not a co-tensor. Let S, V, T be co-tensors of power Il having 

ranks 0, 1 and 2 respectively. We define the co-covariant differentiation of these 

objects as follows: 
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~ 

(Al.  14a) S E S  - I I k S  s1 9 I - I  I-I I 

I 
I JP *V G VI-I 9v + *rth V' - II kv V' (Al. 14b) 

* h 
pv vh - II kv (Al. 14c) V - v  - I -  

CI *v P9V I-I 

* 
Apv + *I'" AP Aup - II kX Apv (Al. 14d) 

- IIk A (Al.  14e) - - * P  
A M V * h  A u V ,  h - rl.lh Apv IJV 

- 

Generalization to higher rank co-tensors is irrxxediate. It can be easily seen f r o l  ex- 

pressions ( A l .  14) that the co-covariant derivitive ef 8 ce-tenscr ~f "I pwwsz;r -~---,.- :: is 2g;aTn 

a co-tensor of the same power. 

The following relations will be found useful: 

V t p  = VI-I ;I-I - (Jfi-4) kp Vu (Al. 16) 



Apv = Apv 
* V  ; v  - (II+6) k V  A’’ + k’ A: 

I 
I 
I 
l 

1 
1 
I 
I 
li 
I 
I 
1 
I 
I 
I 
1 
I 
1 

1 If A’’ = A’’ , we have 

- 
The mctric tensor g satisfies the relations 

’V 

= o  g i n *  x 

g!; = 0 

The analogue of the Einstein tensor G is 
IJV 
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(Al.  18) 

(Al. 19) 
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Appendix 11 

Dirac's Large Number Hypothesis 

In this appendix, we briefly outline Dirac 's  large number hypothesis (LNH) and . 
some of its consequences. More detailed discussions can be found in Dirac's 

papers (6)9 (lo)' (ll). A comprehensive summary has also been given by Canuto 

andL0denqua.i (12) . 
The motivation of Dirac's hypothesis has been the coincidences among certain 

large dimensionless numbers first noted by Eddington(28), and has been known as the 

Eddington numbers. One of these is the ratio of electrostatic and gravitational forces 

between a proton and an electron. 

2 

Gme m = 2 e - 
P 

N1 - (A2.1) 

A second number arises when the age of the universe, approximated by the reciprocal 

of the Hubble expansion parameter is divided by an atomic unit of time. 

3 m c  
= 7 x N2 - 2 

Ho e 

- e  

If the present average density of matter in the universe is taken to be p = 

gm , the total mass within the visible universe defined by this Hubble radius 
3 

c/Ho is givenby p ( - ) . A third large number can thus be derived: 
L Ho /' 
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The coincidences mentioned above refer to the fact that the following relations hold: 

(A2.4a) N1 = al N2 

(A2.4b) 

with a a being of order close to unity. Many theorists believe that the dimension- 

less constants in physics, such as e /Ac o r  m /me can in principle be explained 

theoretically. Likewise there have been numerous speculations about the coincidences 

. 1’ 3 
2 

P 

of the Eddington numbers. Dirac pointed out that the ratios N N2: Ni’2 are of 1: 

order to unity, Zhey are expected to be derivable theoretically as me WGGM expect for 

the fine structure constant. Accepting this point of view, and noting that Nz corre- 

sponds to the cosmological epoch, he came to the conclusion that the gravitational con- 

stant measured in atomic units, and the number of baryons in the visible universe must 

be a function of the epoch. Furthermore, he formulated the hypothesis that given any 

large dimensionless number N, it  can be expressed as 

N =  a $  2 5) 

8 
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where a and k are constants of order unity. Clearly, equations (A2.4) are special 

cases of (A2.5). 

tion: as time passes, N2 necessarily changes and N would change accordingly. 

It should be noted that (A2.5) is now taken to be a functional rela- 

The immediate consequence of the large number hypothesis is that the gravita- 

tional constant is inversely proportional to the epoch and the number of baryons in this 

visible universe increases like the square of the epoch. When Dirac(") applied the 

LNH to R, the radius of the universe measured in atomic units, he concluded that the 

exponent k in (A2.5) must be 1 and hence 

R - t  

where we have written t for N2, which is the epoch in atomic units. 

It should be emphasized that the iarge numbers considered thus far have been 

derived as  ratios of macroscopic, gravitational -miits and i?iizrosc+z, ataxic mits. 

In fact, this prompted Dirac in his or ig ina l  article on the subject to suggest that 

the proper way to understand the LNH is by the consideration of two metrics. But this 

line of reasoning has not been taken up until recently. 

Other astrophysical consequences of the LNH have been considered by various 

authors. The conclusions do not follow as simply from the LNH as  do equations (2.4) 

and (2.6), and various dynamical relations had to be used implicitly or explicitly. 

Hence instead of summarizing these results here, we shall consider them anew in the 

main text as consequences of the modified dynamics of the gauge covariant theory of 

gravitation. 
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